

Keynotes:

Advancing knowledge about childhood diseases through large birth cohort studies

Terence | Dywer

Emeritus Professor of Epidemiology, University of Oxford Senior Research Fellow, Murdoch Children's Research Institute, Melbourne Professorial Fellow, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne

The Swiss Society for Public Health

VIEWPOINT

In the Aftermath of the National Children's Study Is Large Birth Cohort Data Still a Priority?

Terence Dwyer, MPH

MD, MB, BS, AO Nuffield Department of Obstetrics and Gynecology, The George Institute for Global Health, University of Oxford, Oxford, United Kingdom.

Per Magnus, MD, PhD

Norwegian Institute of Public Health, Oslo, Norway.

Jørn Olsen, MD, PhD

The Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark. Study (NCS)¹ brings to the forefront questions about what has been lost and how studies such as this might still be important almost 20 years after initiation in 2000. The rationale then was clear.² Little progress had been made in the previous decades in understanding the causes of many major childhood disorders, and there was insufficient evidence available to confidently mount interventions to prevent many of them. A lack of evidence from cohort studies with prospective data had left a major evidence gap in childhood disease etiology, in stark contrast to efforts involving successful research on adult diseases where cohort studies were a central component.

The 2014 decision to stop the US National Children's

Important pediatric conditions for which prospective data might be critical included birth defects, childhood cancer, type 1 diabetes, and autism.² The exposures of interest for these conditions embraced infections of the mother and infant, environmental this, they were able to enroll and measure mothers in pregnancy and their infants and collect data on their 100 000 participants for what they perceived as acceptable costs, around US\$20 million.

The NCS faced bigger cost hurdles because of the lack of such infrastructure. In addition, its planners argued that prenatal recruitment was necessary to avoid potential selection bias associated with failure to include mothers who miscarried or experienced a stillbirth and decided to sample from the only feasible sampling base in the United States that would include all potential new mothers: the household. Importantly, this would have enabled home-based collection of exposure data that the other more modestly funded international cohorts were unable to incorporate. Analyses conducted later by the NCS team revealed that this sampling approach would inflate the costs over an alternative scenario involving sampling of prenatal clinicians and

Corresponding

Author: Terence Dwyer, MPH, MD, MB, BS, AO, The George Institute for Global Health, Oxford Martin School, University of Oxford, 34 Broad St, Oxford OX1 3BD, United Kingdom (terence.dwyer @georgeinstitute.ox.ac uk).

of interest.

Nonetheless, the proposition that this obstacle must be overcome if progress was to be made in understanding pediatric disease causation was clearly gaining strong support toward the end of the 20th century. As well as the decision to start the NCS, Danish and Norwegian birth cohort studies were launched in the period leading up to 2000. They benefited from the comprehensive sampling frames for health studies and health data linkage that those nations possess. Partly as a consequence of

trum disorder.6

For some diseases, in particular cancer, type 1 diabetes, and cerebral palsy, it was apparent at the planning stage of these cohorts that even 100 000 participants would be marginal for providing the required power. Consequently, the Danish National Birth Cohort and Norwegian Mother and Child Cohort Study have participated in an initiative to pool data with some older studies that have relevant data to obtain the necessary power. These include the Jerusalem Perinatal Study, the

Available evidence on early life exposures and childhood disease derived from:

- 1. Studies with biological endpoints
- 2. Studies with disease endpoints
 - Ecological studies
 - Retrospective epidemiological studies
 - <u>A small number of prospective cohort studies, lacking depth of exposure measurement</u>

Comparison of maternal report to GP record data in relation to infant infection or proxy in the UK Childhood Cancer Case Control Study

Regular social contact outside the home

Nother's report	GP records
OR = 0.6	OR = 1.7
CI 0.5-0.9)	1.1-12

History of infection						
Mother's report	GP records					
OR = 0.94	OR = 1.12					

Prospective questionnaire data or biospecimen analysis needed

_

16 APRIL 1957 AMERICAN JOURNAL OF PUBLIC HEALTH

	Population at Risk	New Disease	Rate/1,000
All persons	898	52	58
Cholesterol measured at Examinations	I or II:		
260 mg per cent and over	172	21	122
225–259 mg per cent	265	12	45
Less than 225 mg per cent	445	18	40
Unknown	16	1	٠
Cholesterol measured at Examination I	:†		
260 mg per cent and over	131	16	122
225-259 mg per cent	188	8	42
Less than 225 mg per cent	334	13	39
Unknown	228	14	61

Table 10—Serum Total Cholesterol in Relation to Incidence of ASHD in Four-Year Follow-Up, Males 45-62

* Rate not computed for base less than 50.

† Included above.

Minimising Uncertainty

Birth cohort studies and childhood diseases

Age

0

5

Disease	Number of events per year			
Adult Cohort 100,000 CHD	200 – 700			
Infant/child cohort 100,000 SIDS	400*			
Congenital malformations Type 1 diabetes Cancer	500 200 for NTD10-4010-20			

International Childhood Cancer Cohort Consortium (I4C)

Terence Dwyer Jean Golding Zdenko Herceg Martha Linet Milena Maule Per Magnus Shoji Nakayama Jorn Olsen Sjurdur Olsen Ora Paltiel Gabriella Tikellis (IDCC)

University of Oxford
Tasmanian Infant Health Study
United Kingdom: ALSPAC
Jerusalem
DNBC Denmark
MOBA Norway
JECS
IARC
National Cancer Institute, NIH USA
MCRI
NINFEA

Risk Factors for Childhood Leukemia

Known Risk Factors

- High-dose single exposure to ionizing radiation
- Pre-natal diagnostic x-ray exposures
- Chemotherapy
- Genetic & constitutional disorders (e.g., Down syndrome, neurofibromatosis type I)
- Pediatric leukemia in sibling of proband
- Established risk factors explain <10% of childhood leukemia

Risk Factors currently under investigation in I4C

- Birth weight
- Birth order
- Pesticides and herbicides
- Maternal infection

Sample size in I4C's participating and emerging cohorts

Country	Study title	Acronym	Recruiting years	Sample size	Current no. of cancers	Current no. of leukemia	By 2020 no. of cancers	By 2020 no. of leukemia
Participating	; cohorts		Sub total	388,118	675	198	746	222
Australia	Tasmanian Infant Health Study	TIHS	1988-1995	10,625	27	4	27	4
Denmark	Danish National Birth Cohort	DNBC	1996-2002	101,042	202	64	238	75
Israel	Jerusalem Perinatal Study	JPS	1964-1976	92,408	172	39	172	39
Norway	Norwegian Mother and Child Cohort Study	МоВа	1999-2007	109,981	200	70	235	82
UK	Avon Longitudinal Study of Parents and Children	ALSPAC	1990-1992	14,062	24	5	24	5
USA	Collaborative Perinatal Project	СРР	1959-1965	60,000	50	16	50	16
Emerging cohorts*			Sub total	594,188	398	125	539	172
Australia	Generation Victoria	Gen V	2018+	80,000	0	0	20	7
Brazil	Campinas Infant Health Study		2014+	100,000	?	?	?	?
China	Born in Guangzhou Cohort Study	BIGCS	2012-2017	30,000	10	3	26	9
China	Lanzhou Birth Cohort Study		2010-2012	10,542	11	4	13	4
China	Taiyuan Birth Cohort study		2012-2016	10,320	4	1	11	4
Denmark	Aarhus Birth Cohort	ABC	1989-1996	106,370	200#	60*	200#	60#
Denmark	Healthy habits for two	HHf2	1984-1987	11,144	26	8	26	8
France	Etude Longitudinale Française depuis l'enfance	ELFE	2011	18,312	19	6	25	8
Italy	Nascita ed Infancia. Gli Effetti dell'Ambiente	NINFEA	2005+	7,500	11	4	14	5
Japan	Japan Environment and Children's Study	JECS	2011-2014	100,000	60	20	105	35
Korea	Korean Children's Environmental Health Study	Ko-CHENS	2015 -2019	70,000	3	1	24	8
USA	Environmental influences on Child Health Outcomes	ENCHO	>35 cohorts	50,000	53	18	75	25
			Grand total	982,306	1073	323	1285	394

*, number of cases for emerging cohorts were estimated

#, excluding 20% of cases that were duplicated in DNBC

Data availability of key exposure domains for mothers in I4C

Variables	ALSPAC	СРР	DNBC	JPS	MoBa	TIHS	BIGCS	ABC	HHf2	ELFE	NINFEA	JECS	Others
Age	٧	V	V	V	V	٧	V	٧	V	٧	٧	V	?
Education	٧	v	v	v	٧	٧	v	v	V	٧	٧	V	?
Marital status during pregnancy	V	v	v	٧	٧	٧	v	?	?	?	?	V	?
Income (gross per household)	V	V	V	?	v	٧	v	v		٧		V	?
Anthropometric measures	V	v	v	٧	٧	٧	v	v	V	V	V	V	?
Smoking	V	v	V	٧	٧	v	V	v	V	٧	V	V	?
Passive smoking during pregnancy	V	v	v	٧	٧	٧	v	v	V	٧	V	V	?
Illicit drug use	?		v		٧			v			٧	?	?
Alcohol consumption at pregnancy	٧		v		٧	٧	v	v	V	٧	V	V	?
Diet during pregnancy	٧		v		٧	v	v	v	V	٧	V	V	?
Vitamin supplement use during pregnancy (folic acid)	٧		٧		٧	٧	٧	٧	v	٧	٧	٧	?
Other medical conditions during pregnancy (DM, hypertension)	٧	v	٧	٧	٧		٧	٧	v	٧	٧	٧	?
Atopy/Asthma in mother	V	V	V	V	V		v		V	٧	V	V	?
Prescription medications	V	v	v		٧	٧	v	v	V	V	٧	V	?
Reproductive history	V	v	v	٧	٧		v	v	V	٧	V	V	?
Occupation	V	v	v	٧	٧	٧	v	v	V	٧	٧	V	?
Infections during pregnancy	٧	v	v		٧	v	v	v		٧	v	V	?
Pesticide/chemical exposures	V		v		٧		V	?	?	?	?	V	?
Antenatal radiation exposure	٧	V		٧	v	٧						V	?

V, data collected

Odds ratios for childhood leukemia and prenatal exposure to pesticides by time period from birth to interview (Schuz et al Am J Epidemiol 2003)

	< 4 years	4 – 6 years	> 6 years
Father	2.11	1.77	1.05
Mother	4.04	1.91	1.54

Proxies of Nutrition Status - Birth weight and Childhood Cancer

Hazard ratio for any cancer by sub-cohort and birth weight continuous (kg increase), adjusted for gestational age and sex of child.

Focus on later born and Leukemia - Is there an association?

Model	HR	95% CI	Ρ
Crude	0.78	0.58 - 1.05	0.097
Adjusted for birth weight	0.74	0.55 - 1.0	0.051
BUT			
Interaction BW* later born			0.036

The plot thickens

Birth weight, kg	Observations, N	Leukemia, N	HR	95%	6 CI	<i>p</i> -value
< 3.0	49,539	26	0.31	0.14	0.72	0.006
(3.0 – 4.0)	115,545	119	0.83	0.57	1.20	0.316
≥ 4.0	14,733	40	0.97	0.48	1.94	0.922

Yes, but modified by birth weight

Birth weight, paternal age, birth order interaction

Paternal age, years	Birth weight, kg	Later born HR	95%	<i>p</i> -value	
40	1	0.09	0.02	0.38	0.001
40	2	0.17	0.06	0.46	0.000
40	3	0.32	0.17	0.61	0.000
40	4	0.61	0.33	1.10	0.102
40	5	1.15	0.46	2.88	0.759
25	1	0.21	0.05	0.81	0.023
25	2	0.40	0.17	0.96	0.040
25	3	0.76	0.46	1.25	0.281
25	4	1.44	0.86	2.42	0.166
25	5	2.74	1.11	6.78	0.029

What other reliable proxies for fetal nutrition might be available in cohort data?

Association of pre-pregnancy BMI and weight gain during pregnancy with childhood cancers

Exposure	Cancer		Leukaemia	a	ALL			
	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value		
Pre-pregnancy BMI (per unit increase)								
Crude	1.01 (0.98, 1.03)	0.619	1.02 (0.98, 1.05)	0.391	1.00 (0.96, 1.05)	0.958		
Adjusted*	1.01 (0.99, 1.03)	0.562	1.02 (0.98, 1.06)	0.358	1.00 (0.96, 1.05)	0.908		
Weight gain during pregnancy (per kg increase)								
Crude	1.01 (0.99, 1.02)	0.435	1.03 (1.00, 1.06)	0.050	1.04 (1.00, 1.08)	0.027		
Adjusted*	1.01 (0.99, 1.03)	0.373	1.03 (1.00, 1.07)	0.044	1.04 (1.00, 1.08)	0.028		

HR, hazard ratio

ALL, acute lymphoblastic leukaemia

All HRs were adjusted for cohorts

* Adjusted for gestational age

Epigenome-wide association studies (EWAS) on birthweight

4 European birth cohorts

- ENVIRONAGE (Belgium)
- INMA (Spain)
- Piccolipiu (Italy)
- Rhea (Greece)

481 cord blood samples UPLC-QTof-MS

- 68 metabolites associated with birthweight
- Retinol associated with both birthweight and smoking

Human metabolome in collaboration with IARC, Scalbert

Rappaport et al., 2014, Environ. Health Perspect.

Maternal infection, cord blood DNA methylation and childhood leukaemia

Adjusted for Sex of child, gestational age and birth weight (N=112,943)

Birth order

Fathers' occupational exposure: Pesticides

	Exposure Prob.	Cases	Hazard Ratio ^a	95% CI
All Cancers	Low	7	0.9	0.4-1.8
	High	14	1.0	0.6-1.7
Leukemia	Low	3	1.2	0.4-3.8
	High	5	1.4	0.6-3.4
ALL	Low	1	-	-
	High	2	0.7	0.2-2.8
AML	Low	2	5.0	1.1-2.2
	High	3	4.8	1.4-1.6
Non-leukemias	Low	4	0.7	0.2-1.8
	High	9	1.0	0.5-1.8
CNS	Low	2	0.8	0.2-3.4
	High	2	0.6	0.1-2.3
Non-CNS	Low	2	0.6	0.2-2.6
	High	7	1.1	0.5-2.3

^aAdjusted for cohort, child's sex, and paternal age